

Tesys Project SS23

3-Bit Rail to Rail DAC Design and Layout in XFAB 0.35 um CMOS Technology

Janis Krieger Conner Cordruwisch

Supervisor: Prof. Dr.-Ing. Andreas König

Overview

1. Introduction

1.1 Motivation

2. Topology

3. Component Design & Simulation

- 3.1 Operational Amplifier
- 3.2 Decoder Logic

3.3 Resistive Divider

4. DAC Design

- 4.1 Testbench and Simulation
- 4.2 Layout vs. Schematic
- 4.3 Final Specs

5. Conclusion

1.1 - Motivation

- Design methods for application-specific cells and blocks
 - Selection, dimensioning, simulation, layout
- Project contents:
 - Modeling, design, simulation, layout
 - Integration with analog structures in mixed-signal designs
 - Utilize state of the art software
 - Integration of industrial process parameters (XFAB 0.35 um)

⇒ 3-Bit Rail to Rail DAC Design and Layout

3 - Component Design & Simulation

- Miller OpAmp configuration
- Designplan based on Allen/Holberg
- MATLAB implementation by Prof. Dr.-Ing. König
- Development of python adaption for extended parameter sweep

3 - Component Design & Simulation

- Sweep parameters:
 - AV0, GBW, CMRp, CMRm, ABp, ABm, SR
- Filtering:
 - drop transistors with dimension greater than 100 um
 - > Metric:
 - 0.999 quantile for CMR
 - 0.999 quantile for OR
- Manual simulation and inspection of final parameters

3 - Component Design & Simulation

Design Specification		Simulation Results	
AV0	60	15	2.22E-06
GBW	2.00E+06	17	2.25E-05
CMRp	1.45	S2	1
CMRm	-1.50	S3	2
АВр	0.70	S5	3
ABm	-0.80	S6	41
Phasemargin	1.05	S7	30
CMRR	80	Cc	2.22E-12
SR	1.00E+06	AV0_r	81.28063218
Ts	1.00E-09	Pdiss_r	8.16E-05
VDD	1.65	ABp_r	1.569649262
VSS	-1.65	ABm_r	-1.556066356
CL	1.00E-11	gm6	3.16E-04
RL	1.00E+05	gm2	3.63E-06
Pdiss	1	RI	1.43E +07
Ĺ	1.00E-06	RII	7.05E +05

- Optimized for:
 - small transistor dimensions
 - low power consumption

Schematic - Sizings

Schematic - Bias Circuit

- MOST-Diode voltage divider
- Current mirror for I5 = 2.22 uA
- М9 NGate:1 pmos . m.1 . M8 . พ=15.0ีม Gate:1 nmos. and! gnd

R

Rheinland-Pfälzische Technische Universität Kaiserslautern

- Parameter sweep of M8 & M9
- Channel length adjustment
- achieved current of 2.25 uA

Layout - Differential Stage

- no matching for M1 & M2 due to small dimension width and length of 1 um
- custom matched centroid transistor layout for M3 & M4

Layout - Folded Transistors

- Full custom folded transistor M8
- M6 & M7 generated from PRIMLIB template
- Advantages of folding
 - reduce area
 - flexibility of aspect ratio
 - minimize fabrication variation

Final Specs

Parameters	Design Plan	Final Results
Open loop gain AV0	60dB	81.54dB
Gain Band-Width	2MHz	1.10MHz
Common Mode Range p/m	1.45V -1.5V	1.61 V -1.43 V
Phasemargin	60°	78.57°
Slew Rate	1 V/us	1.02 V/us
Settling Time	1ns	0s
Output Range p/m	1.56V -1.56V	1.62 V -1.63V

Simulation

Note: LSB not reachable due to limited ICMR.

Possible solutions:

- independent output stage for lower stages
- Non-inverting OpAmp circuit with small gain
- Rail to Rail OpAmp Designplan

In consultation with the supervisor, it was decided, due to the advanced timeline, to retain the imperfection and proceed with the layout

Schematic

- Design based on "Analog integrated circuit design" by Johns David and Martin Kenneth W.
 - Pass Through Logic
 (PTL) design
 - area minimization

Layout

- Layout for 3-Bit decoder
- Usage of uniform 1 um PRIMLIB transistors

R

Simulation - Testbench

Bit pattern for maximum decay and discrete rise

Simulation - Layout vs. Schematic

3.3 - Resistive Divider

Schematic

- Goal: High impedance to minimize idle current
 - PrimLib High-Res Poly2 Resistors
- Dimensions:
 - > 2³ = 8 Stages = 8 Resistors
 - > 1um x 100um results in 10.734 k Ω
 - ➢ Power consumption: $(3.3 V)^2$ / (8x10.734 kΩ) = 0.13 mW

3.3 - Resistive Divider

Layout

Fully custom layout design using:

POLY2 (high resistance per area)

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landa

4 - DAC Design

4.1 - DAC Design

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

4.1 - DAC Design

Simulation

- Two lower bits cannot be reached due to limited ICMR
- Behaviour as expected with slew rate of 1 V/us

4.2 - DAC Design

Layout

4.2 - DAC Design

Simulation - Layout vs. Schematic

R TU Rheinland-Pfölzische Technische Universität Kaiserslautern Landau

4.2 - DAC Design

Simulation - Monte Carlo Analysis (Layout)

4.3 - DAC Design

- Area: 78.825 um x 74.225 um = 0.00585 mm²
- ✤ Static Power Consumption: P = 3.3 V x 167.05 uA = 0.55 mW
- ✤ Maximum Sampling Rate: 378.63 kHz

5 - Conclusion

- Overview:
 - Introduction to a state-of-the-art tool for semiconductor chip fabrication
 - Design of an Operational Amplifier based on a specific design plan
 - Design and construction of a Digital-to-Analog Converter
 - Function simulation and verification
 - Layout implementation in 0.35 µm technology
 - Application of matched component techniques
 - Layout validation through simulation and Monte Carlo simulations

5 - Conclusion

- Improvements:
 - Selection of a more sophisticated OpAmp layout for improved lower voltage representation
 - Mitigation of manufacturing variations impact on resistance divider voltage levels
 - Enhancement of bias circuit robustness

5 - Conclusion

Thank You for your attention!

Questions?

Janis Krieger, Conner Cordruwisch

References

- Tesys Script
- Electronics 1/2 Script
- CMOS analog circuit design by Philip E. Allen and Douglas R. Holberg
- "Analog integrated circuit design" by Johns David and Martin Kenneth W.

