Semester Project in TESYS, 2022

3-bit Flash Analogue to Digital Converter Design and Layout in XFAB 0.35 um CMOS Technology'

Amira Ghezal
Jad Halabi
Anand Joshy
Kamal Baghirli

Supervisor: Prof. Dr.-Ing. Andreas König

Outline

1. Introduction

- Motivation

2. Parts of the Project
\checkmark Amira Ghezal -Chip floor-plan and top-level hierarchical layout
-Comparator and Bias circuit layouts
\checkmark Jad Halabi
\checkmark Anand Joshy
-Matched resistor: design and layout
\checkmark Kamal Baghirli
-Encoder design and layout using
Logic gates
3. Conclusion

Motivation

■ Analog signals are often fed into the computing systems for processing.

■ As the computers can only handle digital data, there is a need to convert the analog data to a digital one.

■ This project designs a Flash converter, which converts one word at a time (3-bit word in this case).

Parts of Project

Block diagram of a 3-Bit Flash ADC

1. Matched Resistor

- Function: Provide fixed voltage levels to which an analog signal from a sensor will be compared
- Sensor output: 0~2V
- Comparator specification: CMR-/+=0.85 from supply rails with vdd=3.3V, which means the comparator works dependably in the range [0.8, 2.5V]
- The sensor and comparator working range did not match
- The best solution was to go back to the comparator design and extract new parameters for transistor widths
- We decided on an adhoc solution (next slide) because of time limitations

1. Matched Resistor

- The adhoc solution was to modify the matched resistor to alter the reference voltages in a way that matches the CMR of the comparators
\longrightarrow Effects the full scale voltage (FSV)
- The resistor chain was designed with two large resistors at the top and bottom of the chain

1. Matched Resistor

Schematic and Layout

1. Matched Resistor

Reference voltage levels

2. Comparator

Schematic

- Two stage comparator
- Transistor ratios are found during the lab session(design steps)

2. Comparator

Layout

- Merging the common source to reduce area

M_{G}	$\mathrm{E}_{\mathrm{G}} \mathrm{MA}_{\mathrm{D}}$

- Simple interdigitized matching
> More matching rules could be followed to improve the design

2. Comparator

Analogue extracted view

Parasitic capacitor

Parasitic resistor

2. Comparator

Transient analysis

3. Bias Circuit

- Schematic

Current value Id from schematic	Current value Id from extracted view
NMOS (M5)	NMOS (M5)
20 uA	19.864 uA

W/L ratio of the transistor M4 has tuned by simulation to achieve 20uA
One bias cell is enough for the 7 comparators

- Layout

3. Bias Circuit

Analog extracted view

- RC extraction by Xfab values defaults

4. Logic Gates and Encoder
 Realization of encoder

- The behavioral model of the encoder in Verilog should be converted to a physical circuit.
- For this, firstly, the logic gates are created.
- Subsequently, the truth table of the Encoder is extracted, and using the created gates, the schematic and layout are built.
- The following slides follow the above-mentioned steps.

4. Logic Gates and Encoder
 Encoder Verilog code implementation

```
//Verilog HDL for "TL22", "Encoder" "functional"
module Encoder (DataIn_i7, DataOut_o3);
    input [6:0] DataIn_i7;
    output [2:0] DataOut_o3;
    reg [2:0] DataOut_o3;
always @(DataIn_i7)
begin
    casex (DataIn_i7)
        8'b1XXxXxX : DataOut_o3 = 7;
        8'b01xxxxX : DataOut_03 = 6;
        8'b001XXXX : Data0ut_03 = 5;
        8'b0001xxX : Data0ut_03 = 4;
        8'b00001xX : DataOut_o3 = 3;
        8'b000001X : DataOut_o3 = 2;
        8'b0000001 : DataOut_o3 = 1;
        default : DataOut_o3 = 0;
    endcase
end
endmodule
```


4. Logic Gates and Encoder

- Logic gates are used as building blocks to realize the encoder operation.
- Encoder uses of NAND and NOT gates.
- Three different variants of NAND gate is used
- 4 inputs to 1 output
- 3 inputs to 1 output
- 2 inputs to 1 output
- Encoder block, previously modelled using Verilog is illustrated using schematic and layout so as to represent it in manufacturable form.

4. Logic Gates and Encoder
 Logic Gates Truth Tables

In1 nand 4×1	In2 nand 4×1	In3 nand 4×1	In4 nand 4x1	$\begin{aligned} & \text { Out } \\ & \text { nand } \\ & \mathbf{4 x} \mathbf{1} \end{aligned}$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

In1_1 $\mathbf{3 x 1}$	In2 nand $\mathbf{3 x 1}$	In3_ nand $\mathbf{3 x 1}$	Out nand $\mathbf{3 x 1}$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

In1 $\mathbf{n 2 n d}$ $\mathbf{2 x 1}$	In2 $\mathbf{n 2 x 1}$ $\mathbf{2 x 1}$	Out nand $\mathbf{2 x 1}$
0	0	1
0	1	1
1	0	1
1	1	0

inv_- input0	inv_-_ output
0	1
1	0

KAISERSLAUTERN

Amira Ghezal, Kamal Baghirli,
Jad Halabi and Anand Joshy

4. Logic Gates and Encoder NAND4x1

- Schematic

- Layout

4. Logic Gates and Encoder

Transient Response (NAND4x1)

4. Logic Gates and Encoder NAND3x1

- Schematic

- Layout

Amira Ghezal, Kamal Baghirli, Jad Halabi and Anand Joshy

4. Logic Gates and Encoder Transient Response (NAND3x1)

4. Logic Gates and Encoder NAND2x1

- Schematic

- Layout

4. Logic Gates and Encoder

 Transient Response (NAND2x1)

4. Logic Gates and Encoder NOT

- Schematic

- Layout

Amira Ghezal, Kamal Baghirli, Jad Halabi and Anand Joshy

4. Logic Gates and Encoder Transient Response (NOT)

4. Logic Gates and Encoder

Encoder Truth Table

In7	In6	In5	In4	In3	In2	In1	Out2	Out1	Out0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	1	X	0	1	0
0	0	0	0	1	X	X	0	1	1
0	0	0	1	X	X	X	1	0	0
0	0	1	X	X	X	X	1	0	1
0	1	X	X	X	X	X	1	1	0
1	X	X	X	X	X	X	1	1	1

4. Logic Gates and Encoder
 Logic functions

$$
\begin{aligned}
& Q_{2}=I_{7}+I_{6}+I_{5}+I_{4} \\
& Q_{1}=\bar{I}_{7} I_{6} I_{6} \bar{I}_{4} \bar{I}_{3} I_{2}+\bar{I}_{7} \bar{I}_{6} \bar{I}_{5} I_{4} I_{3}+\bar{I}_{7} I_{6}+I_{7} \\
& Q_{0}=\bar{I}_{7} I_{6} I_{5} I_{4} \bar{I}_{3} I_{2} I_{1}+\bar{I}_{7} I_{6} \bar{I}_{5} I_{4} I_{3}+\bar{I}_{7} I_{6} I_{5}+I_{7}
\end{aligned}
$$

The function can be simplified exploiting the Boolean identity:

$$
\bar{A} B+A=A+B
$$

4. Logic Gates and Encoder

Simplification

$$
\begin{aligned}
& Q_{2}=I_{7}+I_{6}+I_{5}+I_{4} \\
& Q_{1}=\bar{I}_{5} I_{4} I_{2}+\bar{I}_{5} \bar{I}_{4} I_{3}+I_{6}+I_{7} \\
& Q_{0}=\bar{I}_{6} \bar{I}_{4} I_{2} I_{1}+\bar{I}_{6} \bar{I}_{4} I_{3}+\bar{I}_{6} I_{5}+I_{7}
\end{aligned}
$$

Further manipulation using De Morgan's law, to realize it with only inverters and NAND gates:
$Q_{2}=\overline{\overline{I_{7}} \cdot \overline{I_{6}} \cdot \overline{I_{5}} \cdot \overline{I_{4}}}$
$Q_{1}=\overline{\overline{\overline{I_{5}}} \overline{\bar{I}_{4} I_{2}} \cdot \overline{\bar{I}_{5}} \overline{\bar{I}_{4} I_{3}} \cdot \overline{I_{6}} \cdot \overline{I_{7}}}$
$Q_{0}=\overline{\overline{\bar{I}_{6}} \overline{\bar{I}_{4}} \overline{\bar{I}_{2} I_{1}} \cdot \overline{\bar{I}_{6}} \overline{\bar{I}_{4} I_{3}}} \cdot \overline{\overline{I_{6}} I_{5}} \cdot \overline{I_{7}}$

4. Logic Gates and Encoder

Schematic

4. Logic Gates and Encoder

Layout

4. Logic Gates and Encoder

Transient analysis (Analog extracted view)

Frequency: 2 kHz

The inputs are switched from low to high in the order of their indices.

4. Logic Gates and Encoder
 Transient analysis (Analog extracted view)

4. Logic Gates and Encoder
 Transient analysis (Analog extracted view)

5. ADC

Top Hierarchical level Schematic

Design specifications:
-Reference voltage:
Vref=Vdd=3.3V
${ }^{\bullet}$ Input voltage range :
3.3 V and 0 V
-Bias Current $\approx 20 \mathrm{uA}$

5. ADC

Layout

- Area of Flash cell: 134.575um x 141.325um

Run: "ADC_LVS" (on iseserver002) ×
Run: "ADC_LVS" from
/home/tesys_2022_ghezal/AssuraLVS
Schematic and Layout Match.
Do you want to view the results of this run?
Summary of LVS Issues
Extraction Information:
0 cells have 0 mal-formed device problems
S
0 cells have 0 label short problems
0 cells have 0 label open problems
Comparison Information:
0 cells have 0 Net mismatches
0 cells have 0 Device mismatches
0 cells have 0 Dinice mismatches
0 cells have 0 Parameter mismatches
ELW Information:
Total DRC violations: 0
(on iseserver002) \times
$<$ No DRC errors found.

Amira Ghezal, Kamal Baghirli, Jad Halabi and Anand Joshy

5. ADC

Analog extracted view

5. ADC
 Test bench

Amira Ghezal, Kamal Baghirli,
Jad Halabi and Anand Joshy

5. ADC

DC characteristic (Analog extracted view)

5. ADC

Transient analysis (Analog extracted view)

5. ADC

Transient analysis (analog extracted view)

5. ADC
 Transient analysis

- Design properties: Post layout simulation (extracted view)

Properties	Values
Quiescent power	2.4057 mW
Conversion Power @ max. freq.	2.9073 mW
Device statistics for ADC	115 Transistors
Maximum frequency	10 kHz

Conclusion

- Nominal design of 3-Bit Flash ADC done

■ Maximum frequency 10 kHz with 2.9073 mW conversion power and 2.4057 mW quiescent power

■ Compact layout area of $134.575 \mathrm{um} \times 141.325 \mathrm{um}$
■ MC, WC/corner simulations!
■ Better matching

- Reference voltage circuit design.

References

\checkmark Lecture and lab material of TESYS subject by Prof. Koenig used to prepare this project and the presentation slides

Thank you for your attention!

