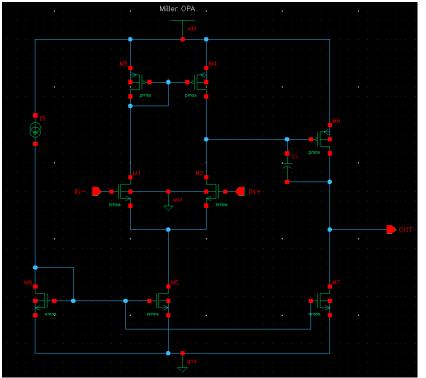


InAmp with external *R_G* and offset compensation based on Miller type OpAmp

Aaron Speicher August, 2023

Supervisor Prof. Dr.-Ing. Andreas König



Overview

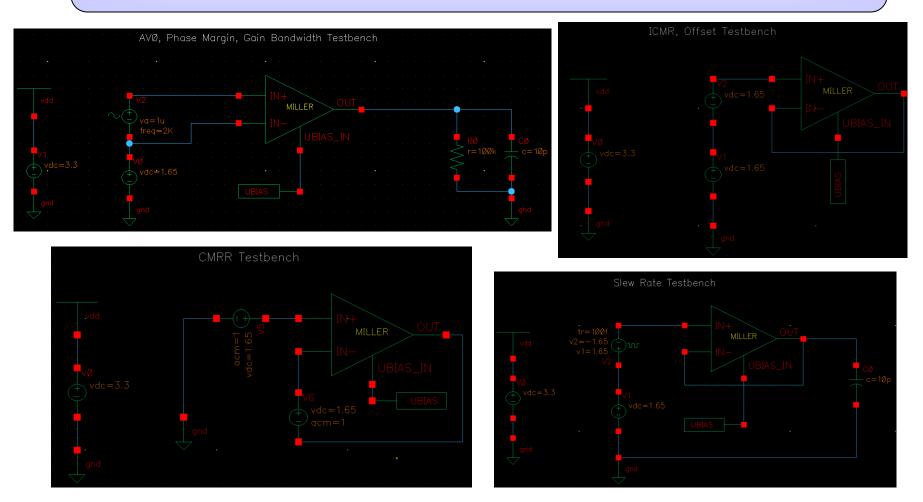
- I. Miller OpAmp
 - 1. Schematic and minimum specifications
 - 2. Schematic simulation and parameter adjustments
 - 3. Layout design
 - 4. Post layout simulation
- II. InAmp
 - 1. Layout design
 - 2. Post layout simulation

Miller OpAmp Schematic and minimum requirements

Schematic

- Stage 1: differential amplifier with pmos current mirror load and single-ended output
- Stage 2: common-source amplifier with a large miller capacitor
- M5 quiescent current set by separate biasing circuit
- Miller compensation capacitor improves stability at the cost of bandwidth

Miller OpAmp Schematic and minimum requirements


Minimum requirements

Open Loop Gain	80 dB
Gain Bandwidth	1 MHz
Phase Margin	60°
Common Mode Range +	0.75 V
Common Mode Range -	-0.75 V
Settling Time	< 1 µs
Slew Rate	1 V/µs
Offset	minimum
CMRR	80 dB
Power Dissipation	minimum
Load Capacitance	10 pF

- Minimum requirements for acceptable performance
- Miller OpAmp used to design InAmp in later stage of the project
 - Higher Open Loop Gain, Slew Rate and Settling time than minimum specification further improve InAmp performance

Miller OpAmp Simulation schematics

Miller OpAmp

Schematic simulation and parameter adjustments

Implementing the before calculated design parameters in the schematic and running all simulations resulted in the following specification:

Open Loop Gain	77 dB
Gain Bandwidth	976 kHz
Phase Margin	73°
Common Mode Range +	1.52 V
Common Mode Range -	-1.30 V
Settling Time	0.77 μs
Slew Rate	1 V/μs
Offset	80 µV
CMRR	86.64 dB

- Open Loop Gain and Gain Bandwidth below minimum spec, high Offset
- Excessive Phase Margin
- Slew Rate and Common Mode Rejection Ratio match minimum spec but improvement for better InAmp performance useful

Miller OpAmp

Schematic simulation and parameter adjustments

Design Approach to improve simulation results

- Hand model transistor equations give hint on the effect of certain design parameters
- Simulator uses much more complex transistor models

➢ Impact of certain parameters might differ from expectation

Solution

• Combine hand model transistor equations with iterative circuit simulation and manual refinement based on experience with the circuit

Miller OpAmp

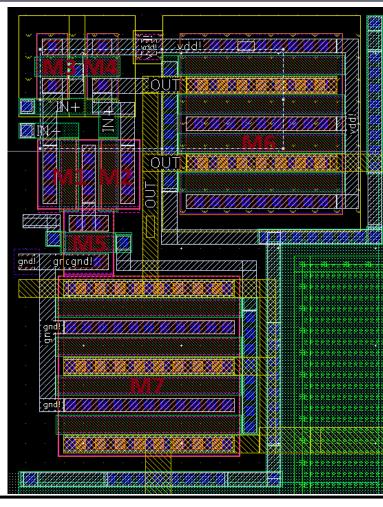
Schematic simulation and parameter adjustments

Design route

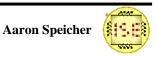
Design change	Specification after Allen/Holberg	Cc -> 1.8pF	I5 -> 4	I5 -> 10	\$6, \$7 -> 30	S1, S2 -> 2	\$1, \$2 -> 3	S7 -> 35	S6 -> 31	Final simulation		
											C	c -> 1.6
Open Loop Gain in dB	77	*	78	77	79	82	83	-	-	81.6		
Gain Bandwidth in MHz	0.976	1.15	1.65	2.67	2.80	3.8	4.6	-	-	4.6		-
Phasemargin in °	73	71	69	66	72	66	62	-	-	63		5.05
Common Mode Range - in V	1.52	-	-	-1.3	-	-	*	-	-	*		60.7
Common Mode Range + in V	-1.30	-	-	1.3	-	-	*	-	-	1.22		-
Settling Time in µs	0.77	-	-	-	-	-	-	-	-	-		-
Slew Rate in µs	1	1.22	2.19	4.2	5.3	5.4	*	-	-	*		6.07
Common Mode Rejection Ratio in dB	86.64	-	-	82	*	91	100	-	-	99.83		-
Offset in µV	80	-	-	-	-	-	90	35	7.21	*		-
												-
S1, S2	1	*	*	*	*	2	3	*	*	*		
S3, S4	1	*	*	*	*	*	*	*	*	*		*
S6	20	*	*	*	30	*	*	*	31	*		*
S7	20	*	*	*	30	*	*	35	*	*		*
S5	2	*	*	*	*	*	*	*	*	*		*
I5 in μA	2.21	*	4	10	*	*	*	*	*	*		*
Cc in µF	2.21	1.8	*	*	*	*	*	*	*	*		1.6

Miller OpAmp Schematic simulation and parameter adjustments

Open Loop Gain in dB Gain Bandwidth in MHz Phasemargin in ° Common Mode Range - in V	Specification after Allen/Holberg 77 0.976 73 1.52	Design Result 81.6 4.59 63° 1.22	Cc -> 1.6pF ? 81.6 5.05 60.7 1.22	Further improvement but high chance of Phase
Common Mode Range + in V	-1.30	-1.3	-1.3	Margin requirement not
Settling Time in µs	0.77	0.21	0.22	being met after layout
Slew Rate in µs	1	5.42	6.07	and extract, Cc kept at
Common Mode Rejection Ratio in dB	86.64	99.83	99.83	1.8pF
Offset in µV	80	7.22	7.22	
S1, S2	1	3	3	
S3, S4	1	1	1	
S6	20	31	31	
S7	20	35	35	
S5	2	2	2	
I5 in μA	2.21	10	10	
Cc in µF	2.21	1.8	1.6	

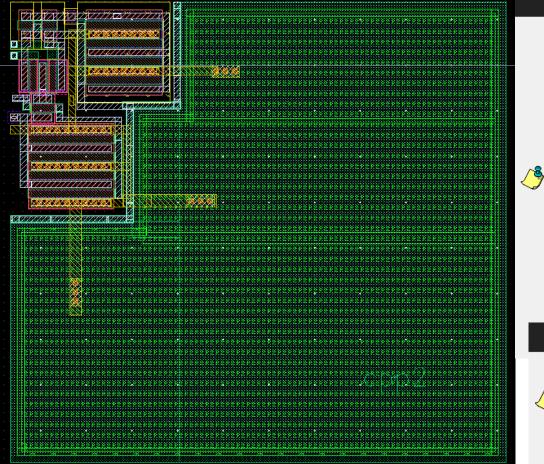

Miller OpAmp Layout design

- Transistors must be designed to achieve acceptable W/L ratio in the complete layout
 - ➢ Folded layout for M6 and M7
 - Folded layout not necessary for M1 and M2 but would result in better matching, less parasitics
- Arranging the transistors to form a close to perfect square not necessary
 - Fill out space with large Miller capacitor to achieve desired chip level W/L ratio



Miller OpAmp Layout design

Layout without Cc


- Arrangement should not have too many corners
- Minimize area by using minimum design rules

R

Miller OpAmp Layout design

Layout with Cc

Run: "MILLER_LVS" (auf iseserver002)

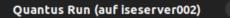
Run: "MILLER_LVS" from /home/tl23_speicher/AssuraLVS

Schematic and Layout Match. You currently have an open run (project).

Do you want to close current project and view the results of new run?

Summary of LVS Issues

Extraction Information:


0 cells have 0 mal-formed device problems 0 cells have 0 label short problems 0 cells have 0 label open problems

Comparison Information:

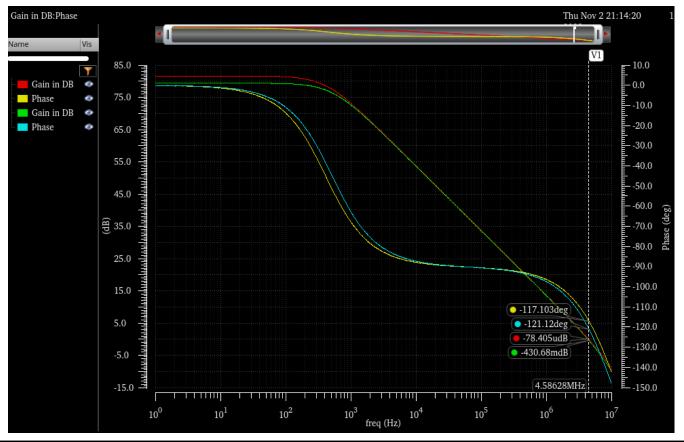
0 cells have 0 Net mismatches 0 cells have 0 Device mismatches 0 cells have 0 Pin mismatches 0 cells have 0 Parameter mismatches

ELW Information:

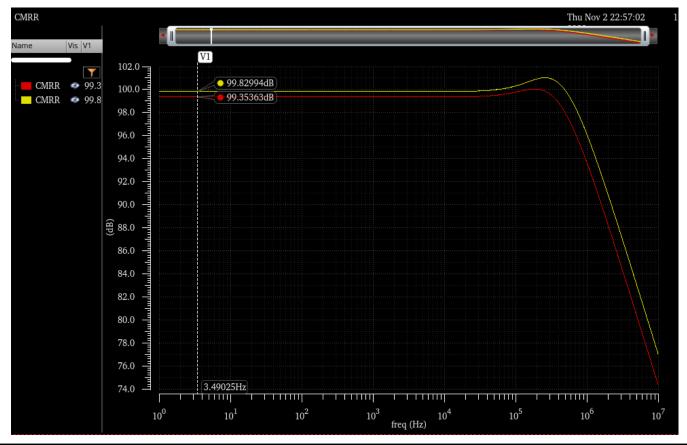
Total DRC violations: 0

The Quantus run "MILLER_LVS" completed successfully The output is in :

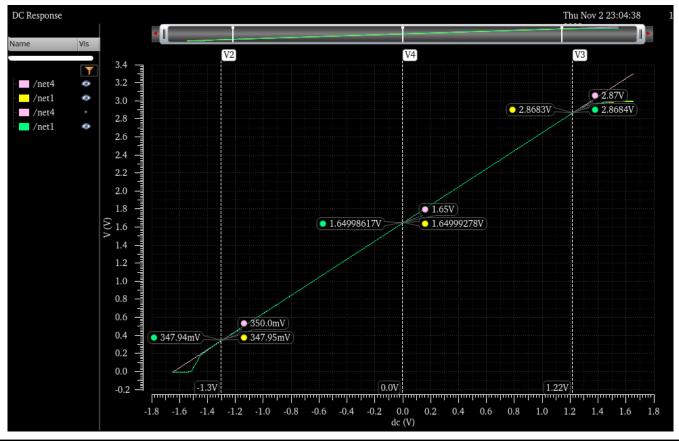
Library: TESYS_PROJECT_AS Cell: MILLER View: analog_extracted



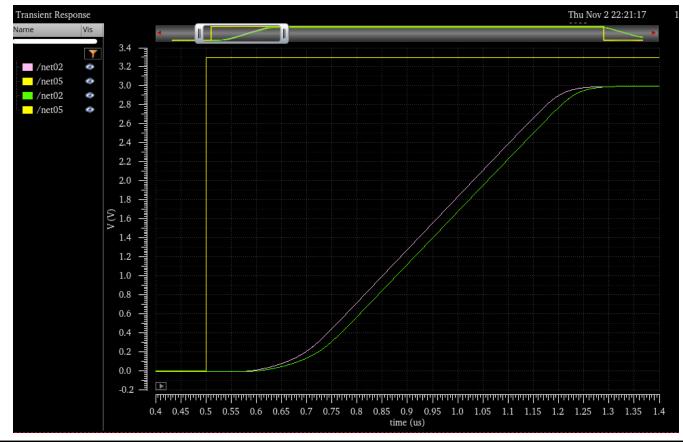
	Specification after Allen/Holberg	Design Result	Post Layout
Open Loop Gain in dB	77	81.6	79.4
Gain Bandwidth in MHz	0.976	4.59	4.40
Phasemargin in °	73	63°	60
Common Mode Range - in V	1.52	1.22	1.22
Common Mode Range + in V	-1.30	-1.3	-1.3
Settling Time in µs	0.77	0.21	0.22
Slew Rate in V/µs	1	5.51	5.46
Common Mode Rejection Ratio in dB	86.64	99.83	99.35
Offset in µV	80	7.22	13.83
S1, S2	1	3	3
S3, S4	1	1	1
S 6	20	31	31
S7	20	35	35
S 5	2	2	2
I5 in µA	2.21	10	10
Cc in μF	2.21	1.6	1.6


Open Loop Gain, Gain Bandwidth, Phase Margin

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

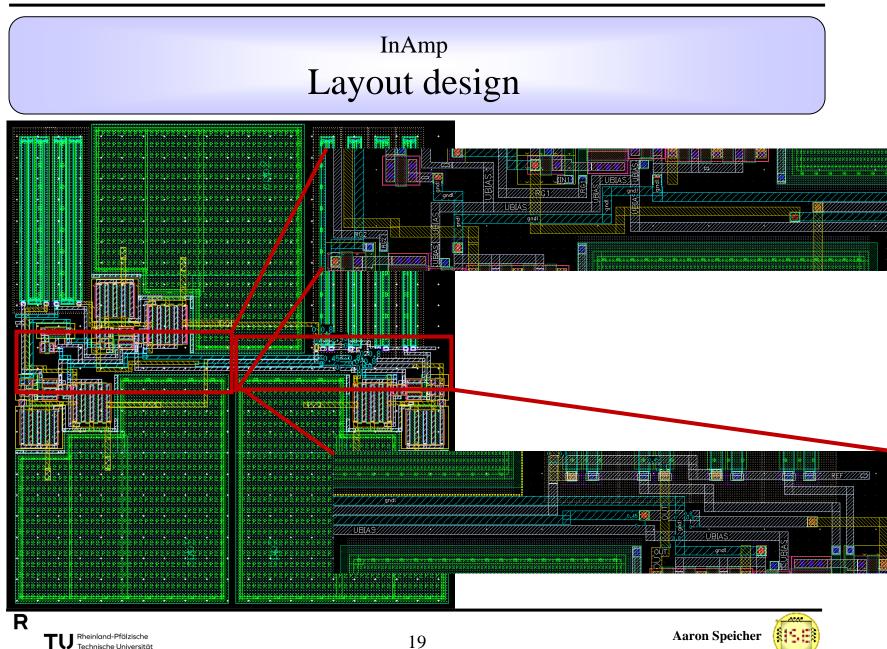

Common Mode Rejection Ratio

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau


Input Common Mode Range, Offset

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

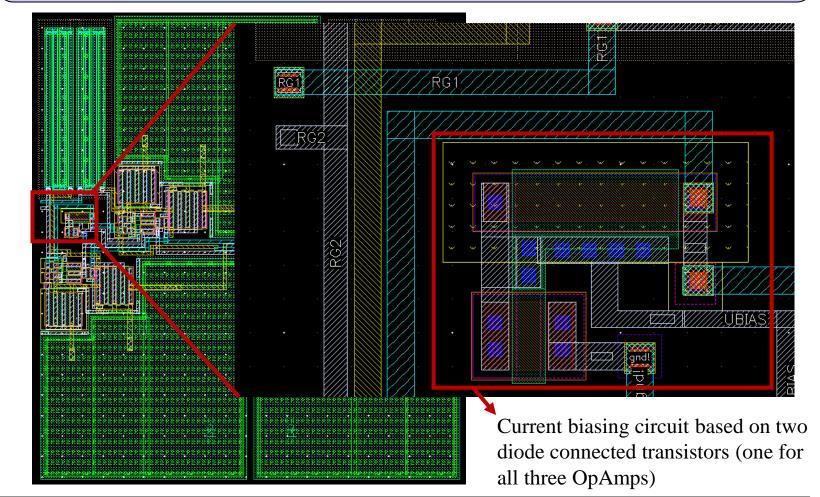
Slew Rate



R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

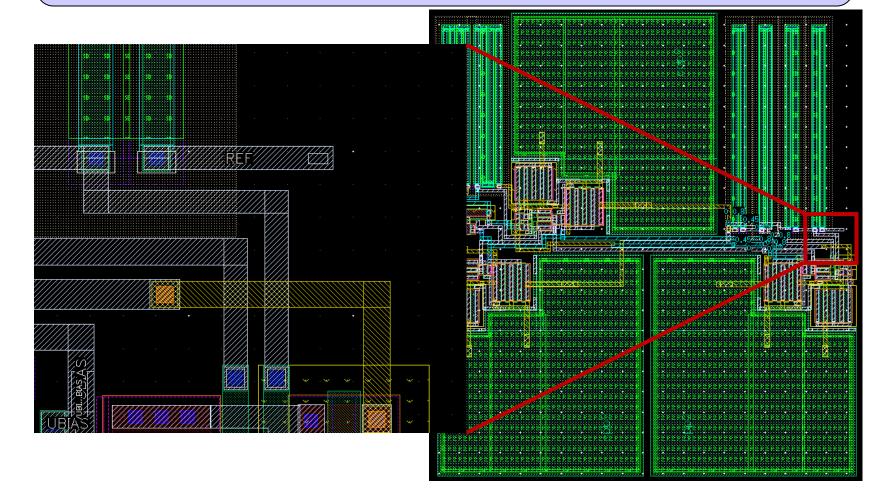
InAmp Layout design Find optimal arrangement for short signal paths Minimize area by using • minimum design rules 000000000 000000000000 P3 P3 P3 P3 Run: "InAmp_LVS" (auf iseserver002) P34P3 Run: "InAmp_LVS" from /home/tl23_speicher/AssuraLVS Schematic and Layout Match. You currently have an open run (project). Do you want to close current project and view the results of new run? Summary of LVS Issues 1922 Extraction Information: 0 cells have 0 mal-formed device problems 0 cells have 0 label short problems Quantus Run (auf iseserver002) 0 cells have 0 label open problems Comparison Information: The Quantus run "InAmp_LVS" completed successfully The output is in : 0 cells have 0 Net mismatches P2 P2 P2 P2 P2 292929292929 0 cells have 0 Device mismatches Library: TESYS_PROJECT_AS 0 cells have 0 Pin mismatches 0 cells have 0 Parameter mismatches Cell: InAmp View: analog_extracted an in the second se ELW Information: 4 Close Total DRC violations: 0 2**7**27272727272727272727 Yes No) Help R

TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

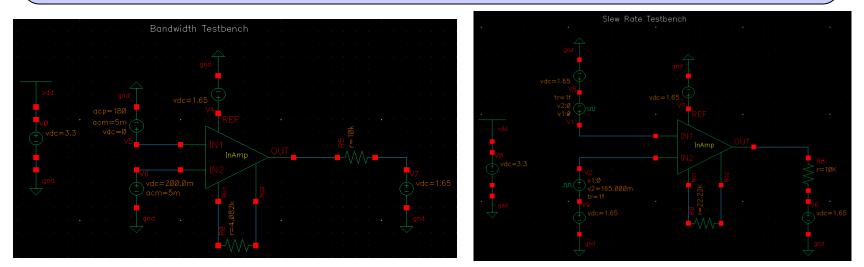


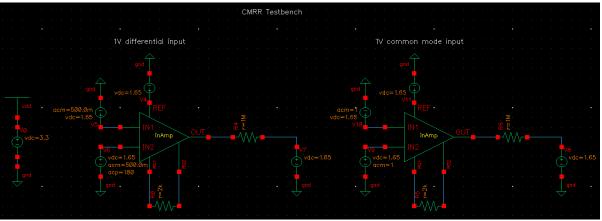
Kaiserslautern

Landau


Ρ

InAmp Layout design

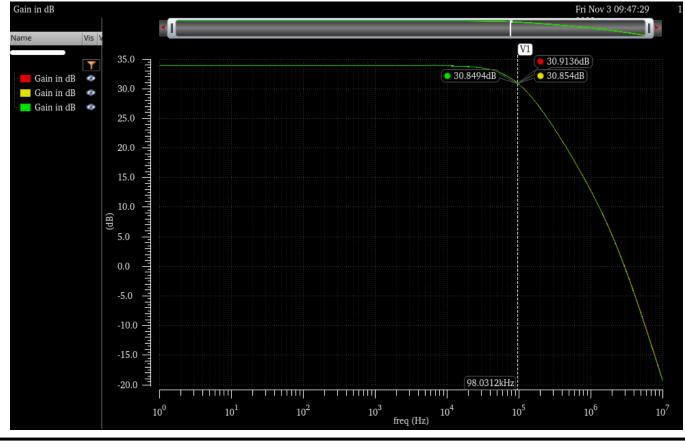



InAmp Layout design

InAmp Simulation schematics

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

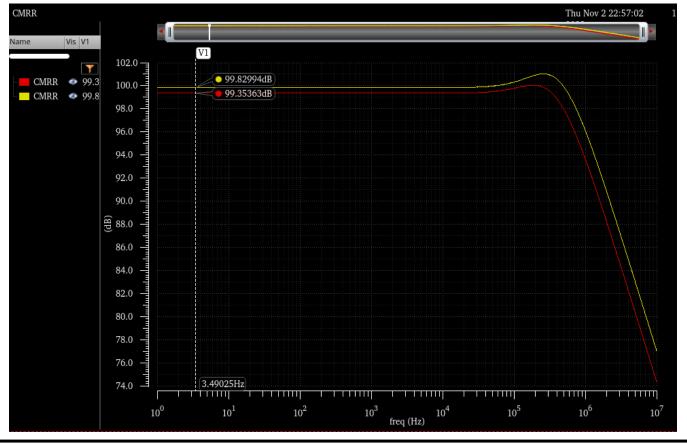
InAmp


Post layout simulation and comparison to commercial InAmp

	Design Result	Post Layout (ideal connections)	Post Layout	INA350
Output Resistance	7.88	8.12	6.78	-
Slew Rate in V/µs	1.97	1.93	1.92	0.24
Common Mode Rejection Ratio in dB	122	121.8	126.5	95
Bandwidth in kHz, G=10	473	467	467	100
Bandwidth in kHz, G=50	98.03	96.67	96.57	25
Gain Error in % G=10	0.095	0.095	0.105	0.05
Gain Error in % G=50	0.19	0.2	0.22	0.082

InAmp Post layout simulation

Bandwidth G=50



R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

InAmp Post layout simulation

Common Mode Rejection Ratio

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

Conclusion

- Miller type OpAmp reaches minimum specification, especially Phase Margin (after layout and extract)
- Successful design of current biasing circuit
- Final InAmp design outperforms commercially available INA350 (after layout and extract)
- Square footprint of final InAmp layout
- Possible improvements:
 - Matched resistors in InAmp layout

Thank You for your attention!

References

- Lecture and lab material of Elektronik II subject by Prof. Koenig
- Lecture and lab material of TESYS subject by Prof. Koenig