

#### Institute of Integrated Sensor Systems



Dept. of Electrical Engineering and Information Technology

# Speech Recognition of Spoken Digits

**Stefanie Peters** 

#### May 10, 2006 Prof. Dr.-Ing. Andreas König





#### Lecture Information

## Sensor Signal Processing

Prof. Dr.-Ing. Andreas König Institute of Integrated Sensor Systems



Dept. of Electrical Engineering and Information Technology University of Kaiserslautern

Fall Semester 2005





#### What did we learn?

Signal Processing and Analysis

Feature Computation

**Cluster Analysis** 

**Dimensionality Reduction Techniques** 





#### What did we learn?

Data Visualisation & Analysis

**Classification Techniques** 

Sensor Fusion

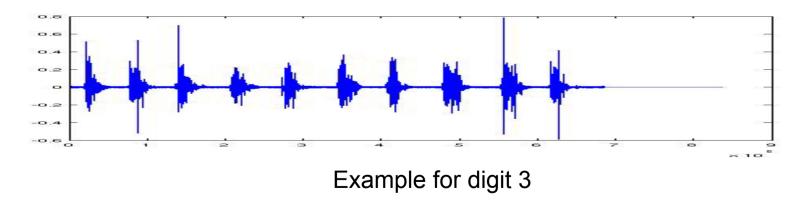
Systematic Design of Sensor Systems





#### Sensor Signal Processing Project Case study: Speech Recognition of Spoken Digits

- General task for a project:
  - Design and implementation of a recognition system for either image or audio data with the programs Matlab and/or QuickCog
    - Recording / taking of training data
    - Preprocessing to enhance input signals for a ensuing feature computation
    - Selection and computation of suitable features
    - Classification of training and test data
  - Here:
    - Recording of spoken digits with a microphone
    - Implementation of a digit recognition system with Matlab






## Training Data

- German Digits (0 to 9), only one speaker
- 10 audio recordings per digit in one wav-file (audio recording with 22050 Hz, mono, 16bit)

-> approximately 8\*10^5 sampling points per wav-file

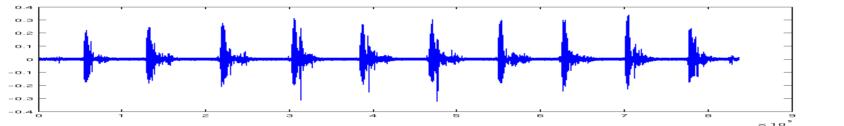




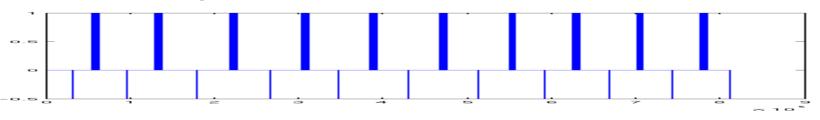


Preprocessing of the Audio Signal

Preprocessing of the audio signal (training and test data) completely in Matlab. Usage of Matlab and own functions:


- Adjustment of the y-position of the signal depending on it's offset (Offset correction)
   Signal = Signal many value (Signal)
  - Signal = Signal mean value (Signal).
- Noise reduction
  - Noise reduction via low pass filtering (the frequency response depends on the noise).
- Separation of the complete audio signal (a series of digits) to smaller audio signals. After the separation a contiguous signal contains only one digit.



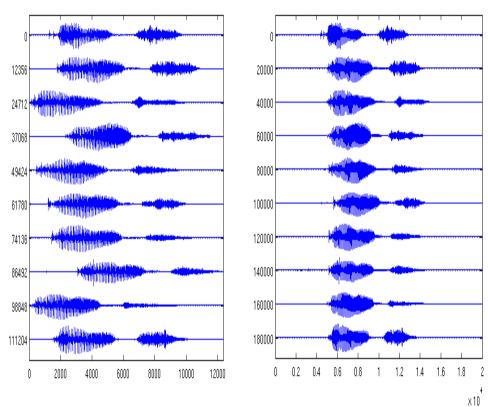



### Separation of the Audio Signal

• Input signal with noise reduction and offset correction (digit 1).



• Extreme values (fixed threshold, bars > 0) and resulting cutting positions (mean position between the extreme values of two different digits, bars < 0).

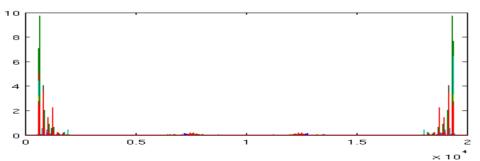







#### Separation of the Audio Signal

- Cutting of the audio signal in regions which contain only one digit.
- Amplitude scaling (for each digit separately) to the codomain [-1, 1].
- Positioning of each digit using correlation and / or center point adjustment.
- Each signal now consists of 20000 sampling points.








## Feature Computation (1)

- Frequency analysis of the audio signal of one digit via Fourier transformation.
- Sub sampling of the signal to reduce the number of the sampling points (usage of low pass filters)
- Example for ten times the digit 1

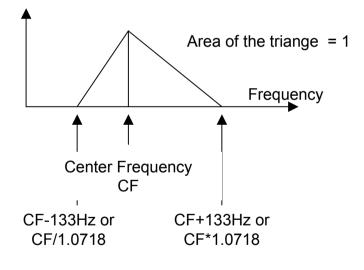


• In ensuing tests, this feature wasn't sufficient for a suitable discrimination between the ten different digits.





## Feature Computation (2)


- Mel Frequency Cepstral Coefficients (MFCC)
  - Usage of the ,Auditory Toolbox: A Matlab Toolbox for Auditory Modeling Work' for the MFCC Computation:
  - Windowing of the input signal (here: with a hamming window, usually sampling windows every 10 msec)
  - Discrete Fourier transformation of each window
  - Logarithm (base 10) of the Fourier coefficients
  - Mapping of the results to the "Mel-Scale" using triangle filters
  - Usage of the first 13 MFCC parameter curves



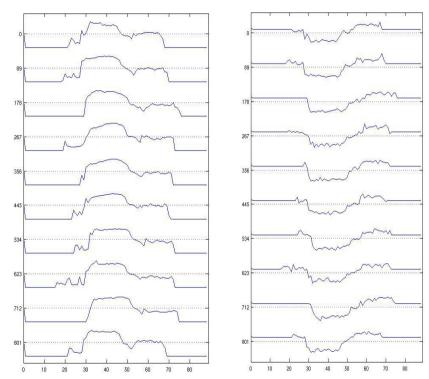


## Feature Computation (2)

• Filter bank of triangle filters:



The filter bank is constructed using 13 linearly-spaced filters with a distance of 133.33 Hz between the center frequencies followed by 27 log-spaced filters (separated by a factor of 1.0711703 in frequency).



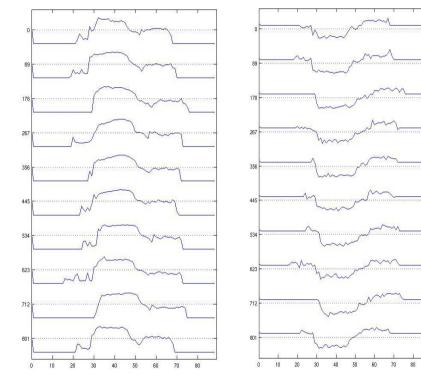



### Training and Classification with Matlab

#### • Method:

- Usage of the first 13 MFCC parameter curves of the training data in comparison to the test data parameter curves
- Each MFCC parameter curve contains 89 values (size audio signal (one digit): 20000 sampling points, sampling rate audio signal: 22050Hz, frame rate hamming window: 100Hz)
- Scaling of the parameter curves to the codomain [0,1]

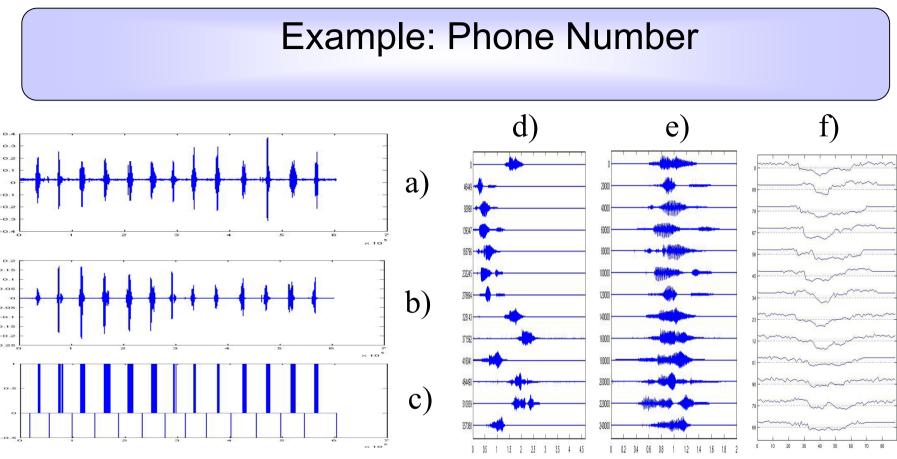



MFCC 1 (left), MFCC 5 (right) for the ten audio signals of the digit 1





### Training and Classification with Matlab


- Method:
  - Computation of the correlation (of the 13 MFCC parameter curves) between training data and test data.
  - The maximal correlation of all MFCC parameter curves is added up for each training sample.
  - The training sample with the highest sum (maximal correlation) sets the affiliation of a test digit.



MFCC 1 (left), MFCC 5 (right) for the ten audio signals of the digit 1







a) No.: 0631/316004574, b) Offset correction and lowpass filtering, c) Extremal values and resulting cutting positions, d) Separated Digits, e) Positioning, f) MFCC 5

-> Recognition rate: 100% (using 13 MFCC parameter curves)





## Test results

- As a result of the classification method all training samples are classified correctly.
- In the following table, the results of the classification for different test audio signals are shown, using only one MFCC parameter curve at a time as well as the combined results for all 13 parameter curves.
- Displayed are the recognition rates using the normalizes MFCC parameter curves. Wrong classification is highlighted in red color.





#### Test results (1)

| MFCC<br>(scaled: [0,1]) | A: 5 times each digit<br>_1, 2, 3, 4, 5, 6, 7, 8, 9, 0 |       | B (like A, different micro, more noise):         |       |
|-------------------------|--------------------------------------------------------|-------|--------------------------------------------------|-------|
| MFCC 1:                 | 5/5, 5/5, 1/5, 3/5, 5/5, 5/5, 4/5, 5/5, 5/5, 3/5       | 41/50 | 5/5, 5/5, 1/5, 3/5, 5/5, 5/5, 4/5, 5/5, 5/5, 3/5 | 41/50 |
| MFCC 2:                 | 5/5, 5/5, 1/5, 4/5, 5/5, 2/5, 2/5, 5/5, 5/5, 5/5       | 39/50 | 5/5, 4/5, 4/5, 1/5, 2/5, 2/5, 0/5, 5/5, 2/5, 4/5 | 20/50 |
| MFCC 3:                 | 5/5, 5/5, 4/5, 1/5, 3/5, 5/5, 5/5, 5/5, 5/5, 5/5       | 43/50 | 5/5, 5/5, 5/5, 0/5, 2/5, 4/5, 2/5, 5/5, 5/5, 1/5 | 34/50 |
| MFCC 4:                 | 5/5, 5/5, 5/5, 4/5, 4/5, 4/5, 3/5, 5/5, 5/5            | 45/50 | 5/5, 5/5, 5/5, 1/5, 2/5, 4/5, 1/5, 5/5, 5/5, 1/5 | 34/50 |
| MFCC 5:                 | 5/5, 5/5, 5/5, <b>3/5</b> , 5/5, 5/5, 5/5, 5/5, 5/5    | 48/50 | 5/5, 5/5, 5/5, 0/5, 3/5, 4/5, 1/5, 4/5, 4/5, 2/5 | 33/50 |
| MFCC 6:                 | 5/5, 3/5, 2/5, 4/5, 5/5, 3/5, 5/5, 5/5, 5/5, 3/5       | 40/50 | 5/5, 2/5, 4/5, 3/5, 3/5, 5/5, 3/5, 5/5, 4/5, 0/5 | 34/50 |
| MFCC 7:                 | 5/5, 2/5, 0/5, 4/5, 3/5, 5/5, 3/5, 5/5, 5/5, 5/5       | 37/50 | 5/5, 5/5, 2/5, 1/5, 0/5, 5/5, 1/5, 1/5, 1/5, 0/5 | 22/50 |
| MFCC 8:                 | 5/5, 0/5, 5/5, 3/5, 4/5, 4/5, 3/5, 5/5, 5/5, 2/5       | 36/50 | 5/5, 0/5, 4/5, 0/5, 1/5, 4/5, 1/5, 1/5, 5/5, 2/5 | 23/50 |
| MFCC 9:                 | 5/5, 4/5, 2/5, 1/5, 5/5, 5/5, 2/5, 5/5, 5/5, 4/5       | 38/50 | 5/5, 3/5, 0/5, 0/5, 2/5, 5/5, 0/5, 0/5, 5/5, 2/5 | 22/50 |
| MFCC 10:                | 3/5, 0/5, 4/5, 4/5, 0/5, 3/5, 1/5, 5/5, 5/5, 5/5       | 30/50 | 3/5, 5/5, 3/5, 0/5, 0/5, 0/5, 0/5, 5/5, 2/5, 3/5 | 21/50 |
| MFCC 11:                | 5/5, 4/5, 5/5, 3/5, 0/5, 4/5, 1/5, 2/5, 4/5, 4/5       | 32/50 | 5/5, 5/5, 1/5, 2/5, 0/5, 0/5, 0/5, 1/5, 5/5, 0/5 | 19/50 |
| MFCC 12:                | 1/5, 1/5, 5/5, 4/5, 2/5, 2/5, 4/5, 5/5, 5/5, 5/5       | 34/50 | 1/5, 2/5, 4/5, 1/5, 1/5, 4/5, 3/5, 5/5, 4/5, 2/5 | 27/50 |
| MFCC 13:                | 2/5, 1/5, 2/5, 1/5, 1/5, 3/5, 4/5, 5/5, 1/5, 2/5       | 22/50 | 2/5, 1/5, 2/5, 0/5, 0/5, 1/5, 0/5 ,5/5, 5/5, 0/5 | 16/50 |
| All:                    | 5/5, 5/5, 5/5, 5/5, 5/5, 5/5, 5/5, 5/5,                | 50/50 | 5/5, 5/5, 5/5, 4/5, 3/5, 5/5, 3/5, 5/5, 5/5, 4/5 | 44/50 |





### Test results (2)

|                                                 | C: Phone Number:                             | D: (like C, different micro, more noise): | E: a series of digits:               |
|-------------------------------------------------|----------------------------------------------|-------------------------------------------|--------------------------------------|
|                                                 | 0049 / 613316004574                          | 0049 / 613316004574                       | 1234567890                           |
| MFCC 5: (best results when using only one MFCC) | 5539 / 631316774574                          | 0039 / 631316004574                       | 1233567899                           |
| All :                                           | 0049 / 631316004574                          | 0049 / 631316004574                       | 123456789 <mark>9</mark>             |
|                                                 | F: Pizza Service 1<br>(Joey's): 0631 / 10865 | G: Pizza Service 2:<br>004963110865       | H: Pizza Service 3:<br>10865         |
| MFCC 5:                                         | 0641 / 10865                                 | 6023 / 62116065                           | 10165                                |
| All :                                           | 0631 / 10865                                 | 0049 / 63110865                           | 10865                                |
|                                                 | I: Digits 1-5 (soft-<br>spoken)              | J: Digits 1-5 (loud)                      | K: Phone Number 2:<br>0180 / 333 999 |
| MFCC 5:                                         | 62345                                        | 12025                                     | <b>9</b> 186 <b>2</b> 33 999         |
| All :                                           | 12345                                        | 12345                                     | <b>9</b> 180 333 999                 |
|                                                 | Other Female: 1739                           | Other Female: 3456                        | Other Male: 3578                     |
| All:                                            | 173 <mark>0</mark>                           | 3436                                      | 3662                                 |





### Conclusions

- Results:
  - Suitable training of a recognition system that recognizes spoken digits from one speaker.
  - More than one MFCC parameter curve is needed for the classification.
  - Pattern Matching via correlation needs a lot of time.
     (Training: 100 digits -> 1 min, Testing: 10 digits -> 2 min)
  - No suitable digit recognition for different speakers.
- Further problems:
  - Scaling of the length of a spoken digit is difficult to implement.





#### Questions







### Matlab Functions

#### One example function for training and testing with Matlab:

#### function SpeechRecognitionExp ()

- S1 = loadTrainingData1(0);
- T1 = loadTestData1(0);
- PlotParam = 0;
- FilterParam = [800, 0.005, 0.99999];
- CutsParam = [0.1, 0.05, 10000];
- MFCCParam = 0;
- NormalizeParam = 1;
- [MFCCSignal, FilterParamTrain, CutsParamTrain]

- // load training data (here: 10 wav files (->100 digits))
  // load test data (here: 10 wav files (->50 digits))
- // 1: plot results (filtered signal cut signal, mfcc parameter, ...)
  // Filter size and frequencies for a band pass filter
- // Thresholds for the separation of the digits, minimum distance
   between two digits (in sampling points)
- // 0: all MFCC parameters, >0 only one MFCC parameter
- // 1: scale MFCC parameters to [0,1]
- = SpeechRecogTrain(S1, MFCCParam, PlotParam, FilterParam, CutsParam); SpeechRecogTest(MFCCSignal, T1, MFCCParam, NormalizeParam, PlotParam, FilterParamTrain, CutsParamTrain);

