
Institute of
Integrated Sensor Systems

Dept. of Electrical Engineering and Information Technology

A parallel kNN classification coprocessor
Semester project for the Neurocomputing course, WS2009/2010

by Ivan Shcherbakov

Overview

1. Introduction
• Problem statement and motivation

2. The algorithm
• Algorithm description

3. Evaluation
• Recognition accuracy evaluation tool
• Evaluation results

4. Hardware design
• Coprocessor testbed
• Coprocessor design

5. Tools
• ROM generator
• Tools summary

6. Conclusion

Problem statement/motivation

• kNN algorithm classifies objects based on training data

• The algorithm has great capacity for parallelism

• Dedicated hardware implementation can be faster than
software on modern CPUs

Overview

1. Introduction
• Problem statement and motivation

2. The algorithm
• Algorithm description

3. Evaluation
• Recognition accuracy evaluation tool
• Evaluation results

4. Hardware design
• Coprocessor testbed
• Coprocessor design

5. Tools
• ROM generator
• Tools summary

6. Conclusion

Algorithm description

• Inputs:
– Features given as coordinates of a point in

N-dimensional vector space
– M “reference points” in the same vector space
– Each reference point is associated with one of C classes

• Output:
– Most widespread class among K nearest neighbors

of the point.

Algorithm description

x

y
1. Create reference points

2. Enter classified point

3. Find K neighbors (K=5)

4. Count neighbors

1 1 3

5. Make decision

Algorithm description

x

y
Reference points remain constant once entered!

Overview

1. Introduction
• Problem statement and motivation

2. The algorithm
• Algorithm description

3. Evaluation
• Recognition accuracy evaluation tool
• Evaluation results

4. Hardware design
• Coprocessor testbed
• Coprocessor design

5. Tools
• ROM generator
• Tools summary

6. Conclusion

Data quantization

• Training/testing data:
– http://archive.ics.uci.edu/ml/datasets.html
– Iris, Vowel data, Sonar data repositories

• Problem:
– Coordinates are represented as real numbers
– Efficient hardware requires integer representation
– Translation involves rounding (multiplying & clipping)

• Goal:
– Assess recognition accuracy for different quantization

levels.

Data quantization: details

• DFG of a “distance neuron”:

-
point1

ref1

-
point2

ref2

-
pointN

refN

Σ

*

*

*

Ncoord

Nsquare

Nfinal

Notation: “8,16,18” means Ncoord=8, Nsquare =16, Nfinal =18

Accuracy assessment program

• C++ program comparing reference floating point
implementation with “custom integer” implementations.

template <unsigned _Bits> class CustomInteger
template<...> AddCustomUnsignedIntegers()
template<...> GetAbsoluteDifferenceOfUnsigned()
template<...> SquareSignedAndGetMSB

• Easy API for comparing implementations:
tester.Test("FP", new ReferenceKNN(0), ...);
tester.TestInteger<16, 32, 32>, ...);
tester.TestInteger<7, 14, 14>, ...);

...

Accuracy assessment program

2 modes of operation:
• Single pass with fixed training/testing border – for verifying

hardware design (comparing exact results).
• P-fold cross-validation – for assessing accuracy:

– Split points from every category in P groups of same size
– For i between 1 and P do:

• Use i-th group as testing data
• Use all other groups as training data

– All testing performed using 10-fold cross validation

Recognition accuracy assessment – Iris data

Floating Point
16 ,32 ,32
8 ,16 ,16

7 ,14 ,14
6 ,12 ,12
5 ,10 ,10

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

100%

99%

98%

97%

96%

95%

94%

93%

92%

91%

90%

Recognition accuracy assessment - summary

Data set Dimensions Bit formula Neighbors Efficiency
Iris 4 (8,16,16) 5 98,0%
Vowel 10 (8,16,16) 3 95,4%
Sonar 60 (8,16,16) 3 83,1%

Overview

1. Introduction
• Problem statement and motivation

2. The algorithm
• Algorithm description

3. Evaluation
• Recognition accuracy evaluation tool
• Evaluation results

4. Hardware design
• Coprocessor testbed
• Coprocessor design

5. Tools
• ROM generator
• Tools summary

6. Conclusion

Board summary

• No external I/O interface:
Testing/training data stored in ROM
Successful recognition count displayed by LED array
All debugging/profiling done in simulator!

• Results are coded as binary numbers:
• E.g. “1000110” means “70 successful patterns”
• Overall number of patterns (75) known at compilation
• That way, “100110” means 93.3% (single run)

Coprocessor testbed

Test unit

clk

training

samples
good_recogs

done

Control module

Coprocessor ROM

Classifier in action

Testbed interface

Port Number of bits Meaning
SamplesDone 16 Amount of samples processed
TotalSuccessfulSamples 16 Total successful recognitions
TrainingMode 1 Training mode active
Done 1 All ROM processed
clk 1 Clock

• No external inputs except clock are required
• Progress and results are easily observed on any FPGA board

with 34+ GPIO ports.
• For small test sets less GPIO ports are required.

ROM interface

Port Number of bits Meaning
SampleNumber 16 Sample number to read
CoordinateNumber log2(kNumDimensions + 1) Coordinate number
UseTrainingSet 1 Use training samples
EndOfDataSet 1 No more samples available

• ROM contains normalized sample data.
• UseTrainingSet selects between training and testing data
• When SampleNumber is greater than last valid sample in

ROM, EndOfDataSet is set to 1 and control logic finishes
training/testing.

Coprocessor design

• Parallelism choices:
– Parallel w.r.t. number of reference points
– Serial w.r.t. number of dimensions
– Serial w.r.t. number of neighbors

• Simplifications/assumptions:
– Nsquare = Nfinal

– Dimension 0 of a point stores category number

Parallel minimum finder

i1

i2

ik

ik-1

mink

mink/2

mink/2

min(a,b) Min

Parallel minimum finder

• Features:
– Logarithmic depth and calculation time

– Polynomial complexity (design size)

– Simple, recursive definition using VHDL generics

• Real implementation also returns INDEX of minimal
element!

Coprocessor interface

Coprocessor interface is synchronous and supports 3 modes:
• Training mode – refpoint coordinates are entered
• Preparation mode – coordinates for recognized point are

entered
• Recognition mode – the coprocessor performs recognition

during several cycles and sets RECOG_DONE when done.

Coprocessor interface

Port Number of bits Meaning
refpoint_num log2(kNumRefPoints) Current refpoint (train mode)
dimension_num log2(kNumDimensions + 1) Current dimension
coordinate_value kBitsPerDimension Current coordinate
TRAIN_ENABLE 1 Enable training mode
RECOG_PREPARE 1 Enable preparation mode
Reset 1 Reset internal state
RECOG_START 1 Start recognition mode
RECOG_DONE 1 “Recognition done” output
recognized_category kBitsPerDimension Recognized category output
clk 1 Clock

Serial accumulating neuron

v1 *
v2

add

clr

sat

clk

result+

&

-
REGo

r
&

Coprocessor control logic

• During recognition the coprocessor goes through a set
of phases maintained by control logic:
– rpInactive – no action is performed
– rpDistanceCalculation – serial neurons are adding
– rpNeighbourCounting – neighbor counters are active
– rpVoting – maximum score is detected
– rpDone – the result is forwarded to output

Coprocessor data path

Neuron

Neuron

Neuron

Ref1 [i]

Ref2 [i]

RefN [i]

i

Classified [i]

Parallel min

Counter1

Counter2

CounterC

clk

Parallel max
result

Note: parallel min/max returns the index of minimum/maximum value

“1”

= 0

Coprocessor performance

Performance estimation using Xilinx ISE Webpack:

Performance evaluation

• Cycles required for single classification:
– T = Ndimensions + Nneighbours + 3
– Iris sample: T = 4 + 5 + 3 = 12 cycles
– 50 MHz clock yields ~ 4 million recognitions/sec
– 5 neighbours 20 million connections/sec
– 4000 times faster, than classifier.exe on T7300 CPU

• But!:
– Classifier.exe is not optimized for performance
– However, 50 MHz is not the limit!

Overview

1. Introduction
• Problem statement and motivation

2. The algorithm
• Algorithm description

3. Evaluation
• Recognition accuracy evaluation tool
• Evaluation results

4. Hardware design
• Coprocessor testbed
• Coprocessor design

5. Tools
• ROM generator
• Tools summary

6. Conclusion

ROM generator

• romgen.pl generates TestROM.vhd from any pair of
training and testing files.

• All constants (data widths, refpoint count, etc.) are updated
automatically.

• No manual work required to convert arbitrary train/test set
into hardware.

Constant summary

Constant File Default value
kBitsPerDimension TestROM.vhd 8
kBitsAfterSquaring TestROM.vhd 16
kNumDimensions TestROM.vhd AUTOMATIC
kNumCategories TestROM.vhd AUTOMATIC
kNumRefPoints TestROM.vhd AUTOMATIC
kNumNeighbours TestROM.vhd 5

Tools summary

• romgen.pl generates TestROM.vhd from any pair of
training and testing files.

• split.pl splits data file into training and testing part.
• scanranges.pl detects the amount of bits for lossless

quantization.
• classifier.exe (C++) compares different values of K and

different quantization modes producing a text summary
and a chart.

Tools summary

Text data file
from Internet Classifier.exe

Accuracy
assessment

Romgen.pl

TestROM.VHD Quartus

VHDL sources

FPGA ROM

Split.pl Reference
results

Simulation
model

Conclusion

• Splitting the work into C++, PERL and VHDL parts allowed:
– Quickly testing/comparing quantization options
– Having reference software design to test hardware against
– Automatically analyzing/converting data files
– Generating ROM files from data files

• Parallel VHDL implementation exploits parallelism in:
– Logarithmic-depth parallel min/max
– Parallel array of neurons

• Results of VHDL design on Altera board matched C++
simulation completely.

Future work

The performance can be significantly improved by:
• Analyzing time-accurate post-synthesis model:

– Finding maximum frequency
– Splitting complex operations over several cycles

(e.g. parallel max5 is twice faster than min75)
• Exploiting additional parallelism:

– Parallel computation w.r.t. dimension count
• Introducing pipelining:

– Running rpDistanceCalculation, rpNeighborCounting,
rpVoting in parallel.

Thank You!

