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Problem statement/motivation

• kNN algorithm classifies objects based on training data

• The algorithm has great capacity for parallelism

• Dedicated hardware implementation can be faster than 
software on modern CPUs
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Algorithm description

• Inputs:
– Features given as coordinates of a point in 

N-dimensional vector space
– M “reference points” in the same vector space
– Each reference point is associated with one of C classes

• Output:
– Most widespread class among K nearest neighbors 

of the point.



Algorithm description
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Algorithm description
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y
Reference points remain constant once entered!
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Data quantization

• Training/testing data:
– http://archive.ics.uci.edu/ml/datasets.html
– Iris, Vowel data, Sonar data repositories

• Problem:
– Coordinates are represented as real numbers
– Efficient hardware requires integer representation
– Translation involves rounding (multiplying & clipping)

• Goal:
– Assess recognition accuracy for different quantization

levels.



Data quantization: details

• DFG of a “distance neuron”:
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Notation: “8,16,18” means Ncoord=8, Nsquare =16, Nfinal =18 



Accuracy assessment program

• C++ program comparing reference floating point 
implementation with “custom integer” implementations.

template <unsigned _Bits> class CustomInteger
template<...> AddCustomUnsignedIntegers()
template<...> GetAbsoluteDifferenceOfUnsigned()
template<...> SquareSignedAndGetMSB

• Easy API for comparing implementations:
tester.Test("FP", new ReferenceKNN(0), ...);
tester.TestInteger<16, 32, 32>, ...);
tester.TestInteger<7, 14, 14>, ...);

...



Accuracy assessment program

2 modes of operation:
• Single pass with fixed training/testing  border – for verifying 

hardware design (comparing exact results).
• P-fold cross-validation – for assessing accuracy:

– Split points from every category in P groups of same size
– For i between 1 and P do:

• Use i-th group as testing data
• Use all other groups as training data

– All testing performed using 10-fold cross validation



Recognition accuracy assessment – Iris data
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Recognition accuracy assessment - summary

Data set Dimensions Bit formula Neighbors Efficiency
Iris 4 (8,16,16) 5 98,0%
Vowel 10 (8,16,16) 3 95,4%
Sonar 60 (8,16,16) 3 83,1%
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Board summary

• No external I/O interface:
Testing/training data stored in ROM
Successful recognition count displayed by LED array
All debugging/profiling done in simulator!

• Results are coded as binary numbers:
• E.g. “1000110” means “70 successful patterns”
• Overall number of patterns (75) known at compilation
• That way, “100110” means 93.3% (single run)



Coprocessor testbed
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Classifier in action



Testbed interface

Port Number of bits Meaning
SamplesDone 16 Amount of samples processed
TotalSuccessfulSamples 16 Total successful recognitions
TrainingMode 1 Training mode active
Done 1 All ROM processed
clk 1 Clock

• No external inputs except clock are required
• Progress and results are easily observed on any FPGA board 

with 34+ GPIO ports.
• For small test sets less GPIO ports are required.



ROM interface

Port Number of bits Meaning
SampleNumber 16 Sample number to read
CoordinateNumber log2(kNumDimensions + 1) Coordinate number
UseTrainingSet 1 Use training samples
EndOfDataSet 1 No more samples available

• ROM contains normalized sample data. 
• UseTrainingSet selects between training and testing data
• When SampleNumber is greater than last valid sample in

ROM, EndOfDataSet is set to 1 and control logic finishes
training/testing.



Coprocessor design

• Parallelism choices:
– Parallel w.r.t. number of reference points
– Serial w.r.t. number of dimensions
– Serial w.r.t. number of neighbors

• Simplifications/assumptions:
– Nsquare = Nfinal

– Dimension 0 of a point stores category number



Parallel minimum finder

i1

i2

ik

ik-1

mink

mink/2

mink/2

min(a,b) Min



Parallel minimum finder

• Features:
– Logarithmic depth and calculation time

– Polynomial complexity (design size)

– Simple, recursive definition using VHDL generics

• Real implementation also returns INDEX of minimal
element!



Coprocessor interface

Coprocessor interface is synchronous and supports 3 modes:
• Training mode – refpoint coordinates are entered
• Preparation mode – coordinates for recognized point are

entered
• Recognition mode – the coprocessor performs recognition 

during several cycles and sets RECOG_DONE when done.



Coprocessor interface

Port Number of bits Meaning
refpoint_num log2(kNumRefPoints) Current refpoint (train mode)
dimension_num log2(kNumDimensions + 1) Current dimension
coordinate_value kBitsPerDimension Current coordinate
TRAIN_ENABLE 1 Enable training mode
RECOG_PREPARE 1 Enable preparation mode
Reset 1 Reset internal state
RECOG_START 1 Start recognition mode
RECOG_DONE 1 “Recognition done” output
recognized_category kBitsPerDimension Recognized category output
clk 1 Clock
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Coprocessor control logic

• During recognition the coprocessor goes through a set
of phases maintained by control logic:
– rpInactive – no action is performed
– rpDistanceCalculation – serial neurons are adding
– rpNeighbourCounting – neighbor counters are active
– rpVoting – maximum score is detected
– rpDone – the result is forwarded to output



Coprocessor data path
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Coprocessor performance

Performance estimation using Xilinx ISE Webpack:



Performance evaluation

• Cycles required for single classification:
– T = Ndimensions + Nneighbours + 3
– Iris sample: T = 4 + 5 + 3 = 12 cycles
– 50 MHz clock yields ~ 4 million recognitions/sec
– 5 neighbours 20 million connections/sec
– 4000 times faster, than classifier.exe on T7300 CPU

• But!:
– Classifier.exe is not optimized for performance
– However, 50 MHz is not the limit!
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ROM generator

• romgen.pl generates TestROM.vhd from any pair of
training and testing files.

• All constants (data widths, refpoint count, etc.) are updated
automatically.

• No manual work required to convert arbitrary train/test set
into hardware.



Constant summary

Constant File Default value
kBitsPerDimension TestROM.vhd 8
kBitsAfterSquaring TestROM.vhd 16
kNumDimensions TestROM.vhd AUTOMATIC
kNumCategories TestROM.vhd AUTOMATIC
kNumRefPoints TestROM.vhd AUTOMATIC
kNumNeighbours TestROM.vhd 5



Tools summary

• romgen.pl generates TestROM.vhd from any pair of
training and testing files.

• split.pl splits data file into training and testing part.
• scanranges.pl detects the amount of bits for lossless 

quantization.
• classifier.exe (C++) compares different values of K and

different quantization modes producing a text summary
and a chart.



Tools summary
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Conclusion

• Splitting the work into C++, PERL and VHDL parts allowed:
– Quickly testing/comparing quantization options
– Having reference software design to test hardware against
– Automatically analyzing/converting data files
– Generating ROM files from data files

• Parallel VHDL implementation exploits parallelism in:
– Logarithmic-depth parallel min/max
– Parallel array of neurons

• Results of VHDL design on Altera board matched C++
simulation completely.



Future work

The performance can be significantly improved by:
• Analyzing time-accurate post-synthesis model:

– Finding maximum frequency
– Splitting complex operations over several cycles

(e.g. parallel max5 is twice faster than min75)
• Exploiting additional parallelism:

– Parallel computation w.r.t. dimension count
• Introducing pipelining:

– Running rpDistanceCalculation, rpNeighborCounting,
rpVoting in parallel.



Thank You!


