

Institute of Integrated Sensor Systems

Dept. of Electrical Engineering and Information Technology

An Image Processing Application on QuickCog "Coin Recognition"

Tunahan AVCI February, 2007

Prof. Dr.-Ing. Andreas König

Overview

- 1. Introduction
 - Motivation
- 2. Parts of the Project
 - Image Acquisition
 - ROI & Feature Computation
 - Feature Selection & Extraction
 - Classification
 - Results
- 3. Conclusion

Motivation

• Nowadays, instead of people machines are used in all parts of our lives and image processing applications are quite common in this machine based applications.

Cigarette vending machine

Photo booth in a public building

Parts of Project

- Our project is also about one of these useful applications. Coin recognition by image processing using QuickCog.
- In this project, we have used both training and test part. We have followed the steps below during the learning process and test it with untrained data.

1. Image Acquisition

• Firstly, We have collected the photos of there different coins and classified them in QuickCog Stichprobeneditor.

2. ROI & Feature Computation

• After data aquisition, we used histogram according to three different colours (red, blue, green) in order to get some statistics about the features of the data and selected the features randomly.

3. Feature Selection & Extraction

• In this part, we have selected reduction methods in terms of separability, overlap, Sequential Backward and Forward selection, etc. in order to reduce the dimensionality and get compact data.

4. Classification

• And the last part, to finialize the study, we used different classification methods in terms of RNN, kNN, Eucledian Distance Clasifier(EAK), etc. and tried to achieve the best classification results.

5. Classification Results

• Now we can continue second part of our project. Test Case. The only but most important think we have to do is selecting the same features with training part.

Results

	Stichprobe	RGB	Extrakt Feature	Global Selection	Classification Method	Training	# Features	Test
1	Coin	Blau	1-256	Separability	RNN	1.00	more	100%
2		Blau	1-256	Overlap-5	RNN	0.988		
		Blau	1-256	without	RNN	bad		
3		Blau	1-170	without	RNN	bad		
4		Rot	1-256	Overlap-5	RNN	1.00	4	100%
5		Rot	1-256	Separability	RNN	1.00	2	100%
6		Rot	1-170	Separability	RNN	1.00	2	100%
7		Grün	1-170	Separability	RNN	0.933	2	
8		Grün	1-170	Overlap-5	RNN	0.9907	more	
9		Grün	1-256	Overlap-5	RNN	1.00	more	100%
10		Grün	1-256	Separability	RNN	1.00	2	100%
		Grün	1-256 or 1-170	without	kNN	Bad		
		Rot	1-256 or 1-170	without	kNN	Bad		
		Blau	1-256 or 1-170	without	kNN	Bad		
		Grün	1-256	Overlap-5	kNN	1.00	more	
		Grün	1-170	Overlap-5	kNN	0.99	more	
		Grün	1-171	Separability	kNN	0.93	2	
		Grün	1-256	Separability	kNN	1.00	2	
12		Rot	1-256	Separability	kNN	1.00	2	93.33 %
13		Rot	1-256	Overlap-5	kNN	1.00	2	
11		Rot	1-170	Separability	kNN	1.00	2	93.33 %
		Blau	1-170	Overlap-5	kNN	1.00	more	
		Blau	1-256	Overlap-5	kNN	1.00	more	
14		Blau	1-256	Separability	kNN	0.98	more	
15		Rot	1-170	Overlap-5	EAK	1.00	4	80%
16		Rot	1-170	Overlap-7	EAK	0.998	more	
		Rot	1-256	Overlap-7	EAK	0.99709	more	86.67 %
17		Rot	1-256	Separability	EAK	1.00	2	93.33 %
18		Rot	1-170	Overlap-5	BP (error = 0.122)	1.0	6	
19		Rot	1-170	Overlap-5 (backward)	BP (error = 0.122)	1.0	6	
		Blau	1-170	Overlap-5	BP (error = 0.122)	Shut d	own twice	

Conclusion

What have I learned from this project?

- In an image processing aplication, all methods may give better solutions, so even it is tedious, researchers must continue with different methods or features until getting a sufficient result
- In an image processing application histogram should be used
- The result of the training part are not always the same with the test part. A perfect classification can give not sufficiently qualified results in test part. So, we cannot say anything before testing.

IMAGE PROCESSING

Thank You for your attention!

Kuncup Iswandy and Andreas König

