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1 Introduction

Intelligent embedded systems are of increasing importance in industrial and
consumer applications and systems. Application domains comprise, e.g., mo-
bile communication devices, games, monitoring devices or medical implants.
In particular with the increasing variety of sensor devices, intelligent systems
solving a diversity of recognition tasks for, e.g., autonomous system behavior or
human-machine-interface, find more and more widespread application. Most re-
cent application fields are summarized by the terms of ambient intelligence and
distributed sensor networks. For this kind of application, appropriate integra-
tion or miniaturization techniques, adequate sensor devices, and sophisticated,
application-specific signal processing are required. Further, the implementation
of the required system, in particular its electronic components, have to meet ad-
ditional constraints, such as real-time requirements or power consumption limi-
tations. At the state-of-the-art, the design of recognition systems in general and
integrated sensor systems in particular still is a predominantly expert-driven,
tedious and labor-intensive task. The processing chain, depicted in Fig. 1 for
the special case of vision, from sensor choice, over signal processing, feature
computation, dimensionality reduction, and classification for decision making
is instantiated manually according to existing experience and expertise. The
quality of the overall solution very much depends on the involved experts abil-
ity. In particular the expense of resources and power in the later implementation
is not explicitly cared for by this approach. In contrast, the design of integrated

Fig. 1. Block diagram of recognition system
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electronics is particularly well supported by design methodologies and tools,
so that the physical implementation of the digital partition of recognition sys-
tems is a rather straightforward step. Due to well-known existing sensitivities
of analog and mixed-signal circuits, the implementation of this system parti-
tion requires more attention, but is supported by methodologies and tools of
increasing ability and quality.

However, the transfer of the obtained recognition system architecture to
the hardware level and the effect of certain design options or compromises,
e.g., reduced accuracy, behavioral deviations of analog circuits etc., can lead
to significant performance deviations and intolerably reduced recognition rates.
Thus, a design approach transcendent with regard to design levels is required,
to assure the actual viability of implemented recognition systems. This issue
as well as common remedies for potentially non-linear systems are well known
from the domain of neural hardware design. Also, the significant potential of
power conservation by appropriate choice of hardware-friendly operators could
be exploited by coordinated design activities on both behavioral and physical
levels.

This paper summarizes research activities of the last years, starting in 1998
to present, which were funded by a research project from DFG VIVA SPP 1062
for the first three years [8] [1]. The objective of this overall research work was
to make a contribution to two key issues in the design of recognition systems.
The first issue is related to the automation of the system design itself. The
elaborated methodology and first tool implementations will be covered in the
following section. The second issue is related to assuring system performance
and obtaining minimum power consumption for the regarded task. Inclusion
of the hardware model in the optimization or learning loop at design time as
well as the hardware itself at deployment time is considered in a holistic design
approach, which will be discussed in the third section. The fourth section will
summarize particular design activities of hardware-friendly low-power sensor
signal processing operators as well as reconfigurable low-power classifier. The
fifth chapter will outline recent activities on dynamically reconfigurable sensor
electronics for flexible and rapid system prototyping as well as self-trimming
and -repairing properties. This work was largely inspired by the activities from
the VIVA project. Concluding, open issues will be addressed and an outlook of
upcoming activities will be provided.

2 Automation of Sensor System Design

Intelligent sensor systems require the definition of a principle architecture given
in Fig. 1. In particular for multi sensor systems, each of the blocks basically can
have a graph-like structure of cooperating methods. Thus, the choice of method
itself, method parameters, and combination of methods on a certain processing
level, e.g., feature computation, are the design tasks to undergo for each new
application. The design could be founded on a knowledge-based approach, in-
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fering one solution from previous experience, or the design could base on the
machine learning paradigm learning from examples, which means appropriate
samples have to be collected along with supervisor or target information and
system configuration takes place based on performance assessment in a learn-
ing or optimization loop. Training neural networks is the typical example for
this case. The techniques have been abstracted to the levels of dimensionality
reduction and in more recent works also to feature computation [12] [14] and by
some means also to sensor and scene optimization. In the reported work, with
some bias to vision application, a general recognition system design framework,
denoted as QuickCog has been conceived in the late nineties. The architec-
ture of this system is illustrated in Fig. 2. Performance assessment based on

Fig. 2. Architecture of the QuickCog system

classification results as well as immediate feature space assessment by overlap,
separability, or compactness measures are provided and used for open-loop as
well as closed-loop optimization. Automatic selection of features is one closed-
loop optimization example, that is employed in a case study for face tracking.
Heuristic as well as stochastic or evolutionary optimization techniques have
been studied in this context and in part have been implemented in the tool.
Assessment measures have been employed and enhanced also to assess potential
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effects of implementation options on system performance [1].
In more recent research work several improvements have been investigated. This
includes additional techniques from the field of swarm intelligence, e.g., particle
swarm optimization (PSO), which proved to be beneficial with regard to speed
and result quality. Also, multi-objective optimization was investigated, both for
cooperative application of several assessment measures as well as the inclusion of
cost as an additional constraint [13]. This work explicitly introduces the option
to include power consumption as an issue into the optimization process. In par-
ticular in conjunction with dimensionality reduction methods, lean and efficient
yet well-performing recognition systems can be systematically constructed, or
better, evolved. The QuickCog system, that also features dedicated interaction
and visualization features for transparent sample collection and system design,
was used as the platform for behavioral modeling of application-specific recog-
nition systems, e.g., a face tracking system, and linked to chip design tools
for validation and optimization of dedicated sensing, feature computation, and
classification. The objective of this approach was, to achieve power savings on
the behavioral level as well as by cooperative design activities between physi-
cal and behavioral level. This will be picked up in more detail in the following
section.

3 Holistic Sensor System Design

Design options and compromises, circuit limitations, as well as the inevitable
static and dynamic deviations due to manufacturing tolerances and drift phe-
nomena have significant impact on the performance of sensors and correspond-
ing electronics. The analog and mixed-signal system partitions are in particular
vulnerable to numerous sources of influence. So, it cannot be a priori expected,
that an electronic embodiment of an application-specific architecture elaborated
by the approach and techniques of the previous section will perform exactly as
its simulation counterpart, i.e., the yield of the resulting electronic embodi-
ment will be compromised by significant deviations from the behavioral system
implementation. However, the applied learning and optimization techniques ba-
sically allow to compensate weaknesses by collective adaptation, if informed on
the underlying problem. Thus, the inclusion of the actual component into the
optimization loop is an effective means to exploit collective parameter adapta-
tion of one or several methods to compensate realization deficiencies.

This approach has first been introduced by Intel for its (Electrically Train-
able Artificial Neural Network) ETANN chip, which implements multi-layer
feed-forward neural networks in analog technology for classification. The chip
suffers from significant scattering of neuron and synapse characteristics, but
due to programmable synapses can be adapted. Host-based training of network
synapses is not aware of these deviations, and, thus, returns weights which will
not offer optimum performance after uploading in a chip instance. Inclusion
of the chip in the learning loop allows the learning algorithm to effectively
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compensate instance-specific deficiencies. This approach, denoted as Chip-In-
the-Loop-Learning (CHILL) can be extended both to more complex system
implementations, including lower-level processing, as well as to the design-level
[6]. Generalizing the applied optimization procedure from gradient descent tech-
niques to methods from Evolutionary Computation (EC), the CHILL concept
is illustrated in Fig. 3 (left), and the extension to design-level is illustrated in
Fig. 3 (right). These two cases in the context of Evolvable Hardware today are
denoted as intrinsic and extrinsic evolution, respectively. EC optimization has
the salient advantage compared to gradient descent techniques to be able to
avoid local minima and potentially reach better solutions. In the extension to

Fig. 3. CHILL concept (left) and the extension to the design level (right)

design level, behavioral information of the circuits under investigation have to
be fed to the learning algorithm. This could be achieved by straightforward,
yet cumbersome export of stimuli and parameter data to the circuit design en-
vironment, e.g., CADENCE DFW II, and simulation result import back to the
learning loop for error computation and parameter update (s. Fig. 4). Also,
validation of circuit and architecture choice can be carried out this way. A
more elegant and considerable faster approach is the extraction of a simple
but effective model of the circuit under investigation, using techniques such as
look-up-tables or parameterized analytical models, and the inclusion of these
models in the host-based learning system software implementation. For the case
study of an analog low-power reconfigurable nearest-neighbor classifier, the cho-
sen circuits and architecture has been validated employing the first approach,
depicted in Fig. 3 (right) and Fig. 4. The regarded classifier was investigated
for eye-shape data classification [6] [1] to serve as a component in a dedicated
low-power implementation of an eye-tracker system for 3D-display application.
In the context of this face-tracker case study [11], eye and no-eye shapes were
collected from various scenes and feature computation was applied employing
three major techniques in a comparative study (s. Fig. 4 (lower left)). Two
of those methods will be discussed along with particular implementations of
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Fig. 4. Level transcendent GAME design methodology employing CHILL concepts

two simple and effective techniques in the following section. Dimensionality
reduction by automatic feature selection was applied and followed by classi-
fier training, which employed an heuristic reduction technique that limits the
number of required reference vectors and alleviates the parallel implementation
requirements [11].

4 Dedicated Recognition System Electronics

The concepts pursued in the overall research work were investigated for two par-
ticular implementation efforts based on the overall face-tracker case study. The
first effort dealt with vision applications and particular options for hardware-
friendly, low-power operators for oriented feature computation. This work lead
to two architectures and vision chip implementations discussed in the first sub-
section. The second effort dealt with the implementation of a low-power recon-
figurable 1NN-classifier. Cells of a dedicated low-power cell library for signal
processing and classification, denoted as ULPAC [7], which was established as
one part of the research work and the design methodology, were employed.

4.1 Image sensors with HDR Oriented Feature Computation

Vision applications, e.g., for surface inspection, object recognition, or track-
ing tasks, rely on appropriate feature computation in real-time. In particular,
oriented features mimicking the information processing encountered in the hy-
percolumns of the visual cortex are a powerful means. Commonly, Gabor filters
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and Gabor jets [9] are applied for oriented feature extraction. Though being
very powerful, precision requirements are high, and digital implementations of
this approach are computationally prohibitive. In this work, two simple and
proven methods, the local autocorrelation (LAC) [2] [3] and its extension [10]
(Extended LAC, ELAC) and the local orientation coding (LOC) were investi-
gated as efficient alternatives. These methods commonly work with a 3×3 local
neighborhood centered on the reference point and 25 masks[4] [10]. This is espe-
cially advantageous for planar VLSI implementation. Based on standard LAC,
an enhanced method with local competition was introduced, which determines
the strongest responding mask locally for each pixel. In this ELAC method ex-

Fig. 5. Block diagram of the ELAC method.

plained in Fig. 5, the index of the prevalent orientation is digitally stored in
each pixel. Thus, inherent A/D conversion lends itself naturally to this method.
Figure 8 shows two pseudo images, where black dots indicate the prevalence of
a horizontal or diagonal local orientation, respectively. Employing a scanning
window over the image, a histogram can be computed as a characteristic fin-
gerprint of the gray-value image contents at each position which can be used as
feature vector in the following. Alternatively, second or higher order statistics
could also be applied. Illumination invariance and spurious mask associations
to monotonous image regions are avoided by thresholding the mask response.
Responses below the given threshold are rejected, which leads to the increment
of an additional histogram bin. Before thresholding, the mask response is nor-
malized by the local gray value average. Thus, we achieve a local thresholding
and effectively combine local adaptation mechanism and feature computation,
which is a salient baseline for integrating both steps in a vision chip and system.

A first ELAC implementation was investigated in an 0.8µm 2M/2P CMOS
technology. Figure 6 (left) shows a block diagram of the ELAC sensor pixel cell.
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Illumination invariance and high dynamic range (HDR) properties are incorpo-
rated by the computation of a local average in each pixel for normalization, em-
ploying a common 2D smoothing network with MOS-transistors in subthreshold
operation as controllable resistors. Normalization makes response comparison
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Fig. 6. Pixel cell block diagram of the ELAC chip (left) and the LOC chip (right).

of two and three pixel masks feasible (s. Fig. 5).
The selected orientations are successively computed and the index of the win-
ning orientation is stored in the pixel feature register. The current orientation
index is broadcasted by the controller to all pixels in the matrix. Thus no analog
storage is required. Five one-quadrant multipliers (translinear loops) compute
responses of current orientation and recent winner. These are compared and
the pixel register is accordingly updated. Finally, the winning mask response is
compared to a reject threshold to exclude low contrast regions with potential
spurious orientation affiliation from further processing. So, the pixel register
contains either the code of the winning mask or the reject code. The layout
of the cascadable pixel cell and the prototype chip with 16 × 16 pixels are
depicted in Fig. 7. The ELAC pixel cell design consists of 252 transistors, occu-
pies 220×204µm2 area, and consumes 100µW @3.3V. The computation of one
orientation consumes 500µs, thus, 20 orientations can be computed in 10ms.
Allowing 10ms for digital readout of the matrix, 50 frames/s can be expected
from modestly sized matrices. The photo sensitive area occupies 20×20µm2
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which implies a fill factor of only 0.89%. For the prototype chip, only address
decoders, digital buffers and I/O-pads as well as four analog bias or control
signals are required (VR, VG, I0, Θreject).

The second regarded Local Orientation Coding (LOC) method [5]), though
being a nonlinear feature computation method, is even simpler, as basically no
multiplication is required. The registered pixel gray-value is compared to each
of those of the four (eight) neighbors. According to the outcome of each compar-

Fig. 8. ELAC coding examples.
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ison, a dedicated bit pattern is generated for the N4 or N8 neighborhood, that
codes the prevalent local orientation [5]. The resulting sum is uniquely separable
into its components, thus, preserving the local orientation information [5]. The
result is amenable to simple post processing employing bit arithmetic and also
can be used for line detection or flow-field computation [5]. In the LOC retina
architecture, the principal design features of ELAC have also been applied.

For the LOC retina, a 0.6µm CMOS 3M/2P technology was chosen. Fig. 6
(right) shows the block diagram and the computational steps of the LOC retina
architecture, which implements an N8 neighborhood and, including a reject
code, requires a 9 bit register. Local average and reject computation is identical
to the ELAC retina. The prototype chip has 16 × 26 pixels, which feature 169
transistors, an average power dissipation of 2µW3.3V, ≈ 130 × 100 µm2 area,
and 10ms computation time for all orientations (50 frames/s) (s. Fig. 9). This
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more advantageous LOC-implementation requires four global analog parame-
ters for the smoothing network, the rejection threshold, and the scaling factor (s.
Fig. 6 (right)). The LOC chip pixel can be further down-scaled by introducing
sequential orientation computation as done in the ELAC retina. Also, introduc-
ing negligible additional digital circuitry, parallel HDR gray value registration
with pixel parallel A/D conversion will also be feasible, which is interesting,
e.g., for more complex active vision system architectures.

4.2 Reconfigurable 1NN-Classifier

Based on the ULPAC circuit library [7] and the preliminary investigations and
validations by simulations for the case study, a reconfigurable 1NN-classifier
was designed in CMOS technology and subthreshold operation [6] [1]. Block
diagram, architecture, and layout of this low-power 1NN-classifier is given in
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Fig. 10. Block diagram, architecture, and layout of low-power 1NN-classifier

Fig. 10. The chip incorporates two 8× 8 fields of 1NN-classfiers as described in
detail in, e.g., [1]. The two fields are complemented by framing circuits for inter-
face and biasing purpose. Reconfigurability is achieved by externally loadable
6 bit RAM and DA-converter per synapse or reference vector component. The
envisioned connection to the QuickCog architecture for programming or CHILL
for compensation is also illustrated in Fig. 10. The CHILL concept application
requires an extension of the initially employed Reduced-Nearest-Neighbor tech-
nique RNN to GA or PSO based technique. The selection of reference vectors
was pursued sucessfully for PSO in recent work and in ongoing research issues
of PSO-based compensation will be studied. The 1NN-classifier chip was also
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manufactured in 0.6µm CMOS technology and packaged and bonded together
with the LOC chip (s. Fig. 13).

5 Dynamically Reconfigurable Sensor Electronics

The application of reconfiguration concepts for analog and mixed-signal low-
power circuits, as exploited for the 1NN-classifier, in general is attractive, but
with regard to area requirement and associated cost, mainly are applicable for
early signal conditioning and processing in sensor electronics. Actor electronics,
of course, represent a similar case with the potential of later result transfer.
The growing amount of different existing sensor principles and the increasing
application of heterogeneous multi sensor systems both require improvements
of flexibility and rapid-prototyping as well as self-calibration, self-trimming,
and self-repairing aspects. In recent work [15], inspired by the described re-
search work and other activities in evolvable hardware, the design of medium
granularity reconfigurable analog arrays has been pursued. Both hardware and
software aspects related to appropriate optimization techniques are regarded.
In this approach, which bears some similarity to the CHILL concept, instead of
weights or classifier parameters, aspect ratios and connectivity of devices, e.g.,
transistors, are adapted by switch patterns loaded into the reconfigurable chip.
Based on appropriate measurement concepts, the switch patterns are deter-
mined in an optimization loop by GA or PSO techniques to meet and maintain
a specifications. Currently, in the context of evolvable hardware, this concept
is pursued by several research groups world wide. This groups particular inter-
est lies in the design of linear circuits of standard topologies with predictable
behavior [15]. This limits the reconfiguration concept to dynamic dimensioning
of circuits, e.g., Miller or other amplifier topologies. Various circuits and op-
timization techniques have been studied on the basis of simulations and first
silicon of the approved concepts is awaited from production to validate the re-
sults by measurements. A key issue in the context of low-power sensor system
application, e.g., for mobile devices or medical implants, is the extension of the
reconfiguration concepts to subthreshold designs. Subthreshold circuits are very
vulnerable to deviations and, thus, reconfiguration is a promising concept. The
effect of the distributed structure with the included switches was studied based
on subthreshold Miller-OPA. Encouraging simulation results were obtained (s.
Fig. 12) and the concept will be pursued to implementation for different ampli-
fier architectures and low-power reconfigurable application circuits.

6 Conclusions

This paper summarizes activities on multi sensor recognition system design
under the particular constraints of low-power design, rapid-prototyping and de-
sign automation, and compensation of static and dynamic deviations. Inspira-
tions for nonlinear and linear processing and corresponding circuits were drawn
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Fig. 11. Reconfigurable Miller OPA implementation in CMOS technology.

Fig. 12. AC simulation results for reconfigurable subthreshold Miller OPA: magnitude
(left) and phase (right)

from the fields of Neurocomputing, Evolutionary Computation, and Neural and
Evolvable Hardware. The work was conducted at two sites and numerous con-
tributors under the supervision and guidance of the author. The work at TU
Dresden was funded for three years in the GAME project in the six years dura-
tion DFG priority program VIVA SPP 1076. The second part of the work was in
part self-financed and industry supported research at TU Kaiserslautern. The
project has pursued technically relevant but ambitious goals with funding dura-
tion limited to just half of the VIVA program duration. So, studies on principle
concepts and solutions, tool implementations and case studies have been con-
ducted mainly on algorithmic level. Also, physical measurements for the chips
given in Fig. 13 designed in the context of the case study of eye shape classifier
for face tracking could not be gained. The developed approach, methodology,
as well as first tools can be abstracted to other application domains in the
field of integrated multi-sensor systems and their applications. For instance the
two recently emerged fields of ambient intelligence and sensor networks are
clearly in need of the introduced methods and algorithms. More recent priority
programs on reconfigurable computing and organic computing, exploiting at
large concepts of, e.g., reconfiguration, self-observation, -trimming, or -repair,
in particular in the digital domain underpin the viability of the general chosen
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Fig. 13. Manufactured chips : ELAC (left) and combined LOC/classifier (right)

approach.
However, the concepts of analog and mixed-signal implementation with regard
to the performance of digital systems is limited to processing tasks in high
spatial proximity to actual sensor elements. This small yet ubiquitous domain
is an attractive candidate and is currently investigated for reconfigurable im-
plementations on the level of analog arrays, in particular, for low-power appli-
cations. One major difficulty for dynamic reconfiguration of linear circuits is
the embedding of appropriate measurement electronics for the assessment and
optimization loops. Nonlinear signal processing approaches potentially can of-
fer remedies in some cases, but at the loss of transparency. Also high speed or
extremely low-power requirements for limited complexity, e.g., in distributed
sensor networks could also advocate picking up and continuing the concepts
developed in GAME under DFG VIVA grant.
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